Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Axel K. Fischer and Peter G. Jones*

Institut für Anorganische und Analytische
Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany

Correspondence e-mail:
jones@xray36.anchem.nat.tu-bs.de

Key indicators

Single-crystal X-ray study
$T=143 \mathrm{~K}$
Mean $\sigma(\mathrm{N}-\mathrm{C})=0.002 \AA$
R factor $=0.025$
$w R$ factor $=0.064$
Data-to-parameter ratio $=20.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

Tetramethylguanidinium chloride

In the title compound, $\mathrm{C}_{5} \mathrm{H}_{14} \mathrm{~N}_{3}{ }^{+} \cdot \mathrm{Cl}^{-}$, the central C atom displays almost ideal trigonal planar geometry. Classical hydrogen bonds of the form $\mathrm{N}^{+}-\mathrm{H} \cdots \mathrm{Cl}^{-}$link the formula units into discrete centrosymmetric dimers.

Comment

The title compound was formed as an unexpected hydrolysis product during a study of guanidinophosphine derivatives (Münchenberg, 1996). Its structure is nevertheless of interest because few salts of this cation have been structurally investigated (CCDC refcodes: BEQQOD, KOYWEA, MATKAT and XERHEH; Version Oct. 2002; Allen \& Kennard, 1993), and because of its hydrogen-bonding pattern.

(I)

The formula unit displays no imposed crystallographic symmetry. The geometry at the central atom C 1 is almost ideal trigonal planar; the r.m.s. deviation from the least-squares plane of $\mathrm{C} 1, \mathrm{~N} 1, \mathrm{~N} 2$ and N 3 is $0.006 \AA$. The methyl groups are rotated out of this plane (torsion angles are in Table 1).

The classical hydrogen bonds of the form $\mathrm{N}^{+}-\mathrm{H} \cdots \mathrm{Cl}^{-}$ (Table 2) link the formula units into discrete centrosymmetric dimers (Fig. 1). Further contacts of the form $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}^{-}$, the shortest of which $(\mathrm{C} 4-\mathrm{H} 4 \mathrm{C} \cdots \mathrm{Cl})$ has a normalized (Steiner, 1998) H $\cdots \mathrm{Cl}$ distance of only $2.70 \AA$, may also be interpreted as hydrogen bonds.

Experimental

Crystal data

$\mathrm{C}_{5} \mathrm{H}_{14} \mathrm{~N}_{3}{ }^{+} \cdot \mathrm{Cl}^{-}$	$D_{x}=1.222 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=151.64$	Mo $K \alpha$ radiation
Monoclinic, $P 2_{1} / n$	Cell parameters from 50
$a=6.979(4) \AA$	reflections
$b=13.153(7) \AA$	$\theta=10-11.5^{\circ}$
$c=9.283(4) \AA$	$\mu=0.39 \mathrm{~mm}^{-1}$
$\beta=104.73(4)$	$T=143(2) \mathrm{K}$
$V=824.1(7) \AA^{3}$	Block, colourless
$Z=4$	$0.7 \times 0.6 \times 0.6 \mathrm{~mm}$

Received 24 January 2002
Accepted 28 January 2002
Online 8 February 2002

Data collection

Stoe Stadi-4 diffractometer
ω / θ scans
Absorption correction: none
3151 measured reflections
1900 independent reflections
1763 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.026$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025$
$w R\left(F^{2}\right)=0.065$
$S=1.08$
1900 reflections
94 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& \theta_{\max }=27.6^{\circ} \\
& h=-9 \rightarrow 9 \\
& k=-17 \rightarrow 0 \\
& l=-12 \rightarrow 6
\end{aligned}
$$

3 standard reflections frequency: 60 min intensity decay: none

$$
\begin{aligned}
& \begin{array}{c}
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0265 P)^{2}\right. \\
\quad+0.1898 P] \\
\text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.001 \\
\Delta \rho_{\max }=0.16 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.19 \mathrm{e}^{-3}
\end{array}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{N} 1-\mathrm{C} 1$	$1.3304(15)$	$\mathrm{N} 3-\mathrm{C} 1$	$1.3370(14)$
$\mathrm{N} 2-\mathrm{C} 1$	$1.3417(15)$		
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 3$	$120.91(10)$	$\mathrm{N} 3-\mathrm{C} 1-\mathrm{N} 2$	$119.36(10)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2$	$119.70(10)$		
$\mathrm{C} 4-\mathrm{N} 3-\mathrm{C} 1-\mathrm{N} 1$	$-23.93(16)$	$\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 1-\mathrm{N} 1$	$-21.74(16)$
$\mathrm{C} 5-\mathrm{N} 3-\mathrm{C} 1-\mathrm{N} 1$	$151.32(11)$	$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 1-\mathrm{N} 1$	$145.76(11)$

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{Cl}$	$0.918(17)$	$2.415(17)$	$3.2863(17)$	$158.4(13)$
$\mathrm{N} 1-\mathrm{H} 1 B \cdots \mathrm{Cl}^{\mathrm{i}}$	$0.866(17)$	$2.373(17)$	$3.2268(17)$	$168.9(14)$
$\mathrm{C} 3-\mathrm{H} 3 B \cdots \mathrm{Cl}^{\mathrm{ii}}$	0.98	2.89	$3.773(2)$	150
$\mathrm{C} 4-\mathrm{H} 4 A \cdots \mathrm{Clii}$	0.98	3.00	$3.776(2)$	137
$\mathrm{C} 4-\mathrm{H} 4 C \cdots \mathrm{Cl}$	0.98	2.77	$3.574(2)$	139
$\mathrm{C} 5-\mathrm{H} 5 A \cdots \mathrm{Cl}^{\mathrm{iv}}$	0.98	2.96	$3.922(2)$	167
$\mathrm{C} 5-\mathrm{H} 5 B \cdots \mathrm{Cl}^{\mathrm{iii}}$	0.98	2.81	$3.6492(19)$	144

Symmetry codes: (i) $1-x, 1-y,-z$; (ii) $\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z$; (iii) $x-1, y, z$; (iv) $1-x, 1-y, 1-z$.

Figure 1
Dimeric unit of the title compound. Hydrogen bonds (Table 2) are indicated as thick dashed lines. Ellipsoids are at the 50% probability level.

H atom positions were obtained from difference syntheses. Methyl groups were refined as idealized rigid groups allowed to rotate about the $\mathrm{C}-\mathrm{N}$ bonds. H atoms of the NH_{2} group were refined freely.

Data collection: DIF4 (Stoe \& Cie, 1992); cell refinement: DIF4; data reduction: REDU4 (Stoe \& Cie, 1992); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97.

The authors thank the Fonds der Chemischen Industrie for financial support and Mr A. Weinkauf for technical assistance. The crystals were kindly provided by Professor R. Schmutzler and Dr J. Münchenberg.

References

Allen, F. H. \& Kennard, O. (1993). Chem. Des. Autom. News, 8, 31-37. Münchenberg, J. (1996). PhD Thesis, Technical University of Braunschweig (ISBN 3-932243-09-9).
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Siemens (1994). XP. Version 5.03. Siemens Analytical X-ray Instruments, Madison, Wisconsin, USA.
Steiner, T. (1998). Acta Cryst. B54, 456-463.
Stoe \& Cie (1992). DIF4 and REDU4. Stoe \& Cie, Darmstadt, Germany.

